
Chapter 1

POINT KINETICS

1.1 INTRODUCTION

The Point Kinetics Model is widely used in reactor dynamics because of the
apparent simplicity of the resulting equations. The main difficulty of this
method lies in obtaining the necessary parameters describing the reactor.
Nevertheless, many characteristics of the dynamic behaviour of a nuclear
reactor can be deduced from them. Also, the point kinetics method can be
used as a basic test of the more sophisticated methods used in full space
time calculations; if a given method is not able to pass the test on a reactor
considered as a single point or region, it will have difficulties when considering
the reactor with many regions.

We present here a very sketchy demonstration of point kinetics; another
course will be devoted to this method.

1.2 DERIVATION

The starting point of the point kinetics equation is of course the space-time
neutron transport equations. This transport equation is almost impossible
to solve, even on the most powerful computers available today. We resort
instead to the diffusion approximation of this, which is obtained after apply
ing the PI spherical harmonics approximation to the directional flux. This

I
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space time diffusion equation is

a G G D

:. at <p. (i", t) =' -'1.7;('1, t)-Etg<I>g+];;1 Esgg'<l>g'+X~ (1 - f3) 91;1 vEfg'<pg,+trX1.,\;Ci(i", t)

(1.1)

(1.2)

(1.3)

g=I, ... ,Gandi=I, ... ,D
The main idea in point kinetics is to separate the (multigroup) neutron

flux in a part depending only on space, and another depending only on time,
in the following way,

[1>(f, t)) = [S(i", t)]T(t) (1.4)

This equation is still exact, but [S (i", t)] depends on both space and time in
this approach.

We now introduce a weight vector

[W (f)] =

WG(f)

(1.5)

whose role will be to obtain completely general expressions.
There is a degree of arbitrariness in the choice of T(t) and [5 (i", t)J. Only

the product of the two really counts. We thus introduce a normalization
constraint on T(t) and [8 (i", t)], We define

T (t) = ([W (f)f [vrl [<I>J)

and it follows that after 1.4, [8 (r, t)] must obey the constraint

([W (f)f [vrl [S (r,t))) = 1

(1.6)

(1.7)

where the symbol 0 implies integration over the whole spatial extent of the
reactor. The factor [8 (r,t)] becomes the "form function" ,whereas T(t) is the
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amplitude function. Remark that T(t) represents loosely the total number
of neutrons in the reactor, this number depending somewhat on the chosen
weight vector. The constraint on [S (r, t)Jdoes not depend on time; the form
function may vary in time, but it's spatial integral is time independent. Thus
T(t) represents by itself the time dependence of the neutron population.

We can now obtain a differential equation for T(t) by substitution of
[S (r, t)] T (t) for </> (r, ~ in the space time diffusion equations that have been
pre-multiplied [W (f')] and by integrating over the whole reactor core.

We define the quantities

and

C t _ ([Wf[xt] Gi)
i( ) - ([Wf [vr1 [SJ)

(rwf [vr l [Sl)
A (t) = ---,-----,-------'-----=-~'---<---____.

([Wf {(I - (3) [XpJ + Eli [xt] } [V~fJT [S])

(3i (t) = (3i ([W]T [xt] [V~fJT [SJ)
([W]T {(I -(3) [XP] + i~l (3i [xt] } [v~ff [S])

D

(3 (t) = I: (3dt)
i=l

(1.8)

(1.9)

(1.10)

(1.11)

P(t) = ([W]T {\7 .[D] \7 [S] - [~] [S] + ((1- (3HxP
] + i~J3i [xt]) [V~fnS] } )

([W]T {(1 -(3) [XP] + i~li [xt] } [v~ff [S])

(1.12)
With these definitions, the space-time kinetics equations become

and

dT (t) = p (t) - (3 (t) T () ~ 'C ( )
dt A (t) t +~ "i • t

dG; (t) = (3dt )T ( ) -).C ( )
dt A (t) t •• t

which are the point kinetics equations.

(1.13)

(1.14)
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1.3 THE POINT KINETICS APPROXIMA
TION

So far no approximations have been made. However the calculation of the
parameters p (t), {3, (t) and A (t) depend, by definition on the form function
[5 (f, t)]. In order to know [5 (f', t)] implies in turn knowing the neutron flux
[¢ (f, t)] which necessitates a complete solution of the space time equations.
Thus it becomes very difficult to determine the point kinetics parameters.

The way out ofthis consists in replacing [5 (f, t)]. by a function depending
on space alone, denoted [5 (f)]. This function is usually provided by the
static, initial neutron distribution, before perturbations have been applied.
In this case, it appears clearly that the resulting parameters are necessarily
approximative.

For instance, the (3, and A lose their time dependence. As for the reac
tivity p(t), it's value depends on the time variations of nuclear cross-sections
and diffusion coefficients. But these parameters are applied to a form func
tion which does not correspond to the instantaneous state of the core during
the transient. In this case, it can be shown that the best choice for the weight
function [W]T is the adjoint flux of the initial neutron flux. Any other choice
would increase the error on p(t), and therefore increase the error on the
amplitude T(t).

Despite all these difficulties, point kinetics is still the most widely used
method in reactor kinetics. This is mainly due to the small number of equa
tions to solve, and to the fact that only one spatial calculation (initial state
of the core) is necessary. However, despite this apparent simplicity, many
difficulties are hidden behind these equations.

1.4 AN ANALYTIC SOLUTION

In the presence of specified reactivity changes, with all other parameters
fixed, it is possible to obtain analytic solutions to the point kinetic equations.
The mathematical analysis of these is outside the scope of this course. We
outline briefly the procedure here, for a step change of reactivity. Generally
speaking, p varies in complicated ways as a function of time. We chose time
intervals within which p stays relatively constant. This is the "stairway"
approximation to the function p(t). Reactivity thus stays constant within a
time step.
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We define a vector
T (t)
C1 (t)

['IjJ] = C2 (t) (1.15)

CD (t)

and the following matrix

[R] = (1.16)

f!.I2
A

so that the system 1.13 and 1.14 becomes

d ['IjJ] = [R][l/J]
dt

(1.17)

We also introduce a vector [7jJ'] related to the vector (1/J] by application of a
linear transformation [T],

(1.18)

The system 1.17 then becomes, after substitution of 1.18,

or

which becomes

:t [7jJ] = [R] [T] [t/J1

[T] ~ [7/1'] = [R][T] [1/1]

!!- [7jJ'] = [Ttl [R] [T) [1/J']
dt

(1.19)

(1.20)

(1.21)

The operator [T] is chosen so that it diagonalizes the system 1.21, ,ve will
get

~ [1/J'] = [D] [1jI] (1.22)

where [V] is a diagonal matrix. The individual elements of ['ljJ'] are easy to
calculate in this new basis, and are simply

[7jJ' (t)] = exp (Wi (t - to» [1{1 (to)] (1.23)
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and, after the inverse transfonnation, we get

[Tr l ['ljJ] = exp (Wi (t - to)) [Tr l ['ljJ (to)] (1.24)

or
[,p (t)] = [TJ exp (Wi (t - to)) [Tr l [,p (to)] (1.25)

We are left with calculating the elements of the matrix [TJ, and the Wi.

To determine them, let us consider the systems 1.21 and 1.22, which give

[Tr l [R] [TJ = [D] (1.26)

A result of linear analysis 1 shows that the elements of the diagonal matrix
[1)] are the eigenvalues of the matrix [RJ, and that the columns of the matrix
[T] are made of the corresponding eigenvectors. The elements of the matrix
[Tr l can be calculated by direct inversion, or by solving the adjoint problem.
Thus, we have to solve the eigenvalue-eigenvector problem of the matrix [R].

The eigenvalues are given by

det ([R - wJ]) = 0 (1.27)

The determinant expansion, along the first column of the matrix [R - Wi!]

will give

(1.28)

(1.29)

Note that W = Ai is not a solution of 1.28. Rather they are solutions of

(
p - (3 _ w) + t (3i Ai = 0

A i=IA(\+W)

(1.30)

u~
ui

I
ui

2fUJi =

This is known as Nordheim equations. The zeroes of this equation can only be
obtained approximately (method of Newton and variants... ) when more than
three delayed neutron groups are involved. After obtaining the eigenvalues,
we get the eigenvectors

ui
D

I see for example J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University
Press, Oxford, 1965).
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where the index i is used to show that the eigenvector fUJi belongs to the
eigenvalue Wi. We get

1

[Ur =
u~
ui

2 (1.31 )

ui
D

To find the remaining elements, we solve

[R - Wi!] fUJi = 0 (1.32)

or, more directly,

1
ui

Iu;

o
o
o (1.33)

-AD - Wi uD o

(1.34)
1

We then get
i (Jju· = _ . .,.---
J A Aj + Wi

and the matrix [T] can be constructed

1 1 1
fh ._1_ 13, 1 f!.l. _1_
A >'1 +WQ A' Al+Wl A >'1 +WD

[TJ = 132. _1_ 132 1 f!.l. _1_ (1.35)
A >'2+WO Ii: . A:;l+wl A A2+WD

~._I- ~._I- I3D. _1_
A ).o+wo A AD+Wl A AD+WD

The determination of the Wi shows that these differ much from each other,
the minimum being about, P~I3, whereas the maximum is greater than -AI

in all cases, and greater than 0 if P > o. This characterizes the point kinetics
equations as being "stiff".

We conclude over the following observations:

l' With more than one group of delayed neutrons, the point kinetics equa
tions are difficult to solve.
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2· It is impossible to get a true analytical solution, because the tran
scendental equation for the Wi, which can be solved only by numerical
methods.

3· The matrix [T] must be inverted, or the adjoint problem must be solved.

4· As p varies in time, all this work must be redone at each time step.

Because of all this, the analytic solution of the point kinetics equations
is too difficult to be a practical method. Rather, numerical methods will be
used in place of the analytic method.

1.5 NUMERICAL SOLUTION

We examine here a few simple numerical methods to solve the point kinet
ics equations. A full course on numerical methods could be given on this
topic alone. We restrain ourselves to the simplest practical methods, mainly
because they can be applied to the full space time kinetics with little mod
ifications. Also, some important conclusions can be derived from even the
simplest methods, even with a little mathematical rigor.

In practice, the choice of a numerical is based on three criteria,

• truncation error

• stability

• calculation effort

Proper equilibrium between these three is chosen on individual needs. For
example, if many situations of very different states are to be calculated, the
stability criterion might be the most important one.

In order to review each of the three criteria for a few very simple methods,
we write the point kinetics equations in the form

~IIJ = RIIJ
dt

In this section, we use the following notation:

(1.36)
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Furthermore, in the stability analysis, we suppose that the operator R stays
constant in any given transient. We use the principle, without proving it,
that the stability properties of a given numerical scheme do not depend on
the particular basis used to represent the resultant vectors and matrices.

In this section, we will consider only two numerical schemes, the explicit
method and the implicit method. The first step involved in these methods
is to replace the temporal derivatives in 1.36 by

d wnH _ wn

-w,,"-~-
dt Ilt

(1.37)

1.5.1 Explicit Method

The explicit method consists in replace the right hand side term in 1.36 by
Rwn

• In this case, 1.36 becomes

Truncation Error

\jIn+1 = (I + Rllt)wn (1.38)

Formally, the exact solution of the differential equation 1.36 is an exponential
of the matrix R,

wnH = exp(Rllt)wn (1.39)

The truncation error is the difference between the approximate solution and
the exact solution. Consequently, the truncation error ET is given by

and

ET = (I + Rilt - exp(Rllt))

If we expand the matrix exponential,

ET,," _~R2Ilt2
2

The explicit method is thus of order Ile.

(1.40)

(1.41)

(1.42)
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Stability

In order to examine the stability of the explicit method, we write the differ
ential equation in the basis that diagonalizes the matrix R. In this case, we
go back to equation 1.38, which we rewrite in the new basis

(1.43)

The w will be the eigenvalues of R, this is to say the roots of the Nordheim
equation 1.28.

Starting from the initial conditions Xo at time t = 0, the first cycle of
calculation will give rise to the vector Xl,

(1.44)

The application of the same operator on Xl will give rise to the second cycle

Thus

x 2 _ (I + wtlt)(1 + wtlt)xO

(I + wtlt)2XO

Continuing this process, we find

(1.45)

(1.46)

(1.47)

For example, if we had a negative reactivity, we know that all the w are
negative, and that we must have a decreasing solution. Therefore.

II+wtltl<1

which can be written
-1 < 1 + wtlt < I

We replace w by -Iwl to emphasize that all w are negative.

-1 < I - Iwl tlt < I

(1.48)

(1.49)

(1.50)

The system will be stable if these two inequalities are met. We must examine
the two possibilities: 1 - Iwl tlt < I and - I < 1 - Iwl tlt
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Case 1: 1 -Iwl b.t < 1

We subtract 1 on each side if this inequality, to get

-Iwlb.t < 0

which is always true.

Case 2 : -1 < 1 - Iwl b.t

We subtract 1 on each side of the inequality,

-2 < -Iwl t:..t

which is
-Iwlb.t >-2

11

(1.51)

(1.52)

(1.53)

We change the sign by multiplying by -1. We must change the> by a
<

or finally

Iwlb.t < 2

2
b.t < Iwl

(1.54)

(1.55)

There is thus a condition on b.t to insure stability of the explicit scheme.

This stability condition 1.55 is very restrictive. The negative roots of the
Nordheim equations are very negative, and the most negative one is inferior
to ->'D' being around -*. Time steps lower than 10 or 20 milliseconds will be
necessary to insure stabili ty.

Calculation Effort

The explicit method, given in 1.38 needs only a multiplication of the matrix
b.tR by the vector 'lin to get the solution at the next time step. From this
point of view, the explicit method is very simple and requires very little
calculational effort to put in place.
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1.5.2 Implicit Method

In the implicit scheme, we replace the right hand side of 1.36 by R'1J n +l,

(instead of RlJIn as in the explicit method). Thus

lJIn+1 _ lJIn
---,--- = RlJIn+1 (1.56)

tlt

We group tenus in 'lJn+ 1 and in lJIn together

(I - tltR) \1111.+1 = \1111. (1.57)

and writing lJIn+l in tenns of lJI11.
l

'1'11.+1 = (I - tltR)-l\{ln (1.58)

Truncation Error

The truncation error will be

ET = q,n+l - exp{Rtlt)Wn

and in terms of the implicit scheme,

ET = ((1 - tltR)-l - exp(Rtlt))\I1n

(1.59)

(1.60)

Making the expansions

(1 - tltR)-l = 1+ tltR + (tltR)2 + ... (1.61)

and
1

exp(Rtlt) = I + tltR + "2(RD.t)2 + ... (1.62)

which we substitute in the truncation error expression

1
ET = (I + tltR + (tltRf + ...) - (I + tltR + 2(Rtlt)2 + .. .)'*'11. (1.63)

Stopping the expansion to terms in (.6.tR)2

(1.64)

(1.65)

Also, the

ET ~ -~(Rtlt)2'lJn
2

Consequently, the implicit method is a method of order tlt2.
coefficient of .6.t2 is !, the same as that of the explicit method.

ET ~ (I + .6.tR + (tltR)2) - (I + tltR + ~(Rtlt)2)Wn

and finally,
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Stability

Again we use the basis that diagonaIizes the system. We find

(1.66)

x2 _ (I _ w~)-l)Xl

x2 = (I - wL'...)-2)XO (1.67)

and after n + 1 intervals the solution~r is

(1.68)

We will have a stable solution if

1
-1< L'.. <I

I-w t
(1.69)

(1.70)
1

-1 < < 1
1+ Iwl L'..t

We must have a method whose solution tends towards 0 when reactivity is
negative, ie when all ware negative. in this case, -w can be replaced by Iwl,
which gives

As 1 + Iwl flt is positive, we can nmItiply each member of the previous
inequality by this factor without changing the inequalities themselves,

-(1 + Iwl L'..t) < 1 < (1 + Iwl flt) (1.71)

We examine in turn each of them:

Case 1: -(1 + Iwlflt) < 1

Subtracting 1 on each side gives

- Iwl L'..t < 0 (1.72)

But the absolute value of Iwl L'..t is always positive because flt is always
positive. Then - Iwl flt is always negative, and the inequality is always
true.

Case 2 : 1 < (1 + Iwl flt)
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Subtracting 1 on each side gives

o< Iwl~t

or equivalently
Iwl~t>O

14

(1.73)

(1.74)

But the value of Iwl ~t is always positive, because ~t is always positive.
The inequality is thus always true.

The conditions on stability are thus always verified, and we can conclude
that the implicit method is unconditionally stable.

Calculation Effort

The implicit method, given in 1.58 requires the inversion of the ~tR matrix
to get the solution at the next time step. This matrix can change as the
kinetics parameters, especially the reactivity, change during the transient.
The inversion will have to be performed each time. From this point of view,
the implicit method is much more calcu1ationally inte~sive than the explicit
method. But it has the advantage of unconditional stability, at the price of
a matrix inversion.
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Equation (6.3.8) shows that S(oo~, the asymptotic one-group absorption cross sec

tion for Sm'49, is yNd (1.13 percent) times the one-group fission cross section. Thus yNd

gives a measure of the competition for neutrons between the fission process and absorp

tion in Sml49 once an equilibrium concentration has been attained. Moreover We See

that this equilibrium concentration is independent of the flux level 4>1' Thus, after a

reactor has been operating at high power for a month or so, an equilibrium of Sm l49 is

attained and remains in competition for neutrons for the rest of the lifetime of the core.

For a low-power reactor the same potential competition exists. However it takes so

much longer for the Sm t
4.9 concentration to reach equilibrium that, in many cases, its

effect throughout lifetime is negligible_ This fact can be seen from (6.3.6), which shows

that, if ~';''''I « J.Pm and S(O) = 0,

yNdr
Set) = __t1 [I - exp(-cr.':'<II,t)].".,
If "', is, say, 10' neutrons/cml l=. exp(-~"'It) will be close to unity until t exceeds
109 seconds (about 13 years), at which time it will be approximately 0.996.

After Shutdown from Eqmlibrilun Hieb-Power Operation. If equilibrium conditions have

been attained and the reactor has then been shut down, the time behavior of Pm"9 and

Sm'49 is given by (6.3.5) and (6.3.6) with "', = 0 and P(O) and S(O) replaced by the

equilibrium values (6.3.7) and,<6.3.8). The result is

yNdr" '" I(0) Pm
pet) = J.Pm exp(-l I),

Ndr Ndr <II fO)
Set) = y l?~1 + y 1:." [I - exp(-lPm,)],

"
where t is now the time after shutdown and <1>,(0) is the flux prior to shutdown (i.e., the

flux associated with the initial equilibrium concentrations of Pm'" and Sm!49).

Physically these equations state that the equilibrium samarium present at shutdown,

/ldr"/~';', is augmented by an amount y'ldr" 4> , (O)/J.Pm as the equilibrium promethium

decays into samarium. This final concentration doe> depend on the value of "'1 prior to

shutdown, and the increase in concentration will be significant for

J.Pm _ 3.5 x 10- 6 -111
-;;:- - '" < a:;- =4 x 10 _
'" 1 ,

Thus, when "'I is slightly less than 10'" the concentration of Sm"9 present after shut

down is about twice its equilibrium, full-power concentration. After the reactor is turned

on again, the extra samarium will burn ouland the equilibrium conditions (6.3.7) and
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Figure 6.4 Behavior of Sm I"~ in several transient situations.

(6.3.8) will return. Thus, provided the rc:1etor contains enough excess fuel to go critical

despite the increased absorption in Sm 1
.-

9 after shutdown. that e.~tra absorption produces

no lasting effects.

Figure 6.4 shows the beh.1vicr of Sm t
.-., under several transient conditions.

The XelJ~ Fission-Product CIa:UB
From the viewpoint of critic:dity and control. the isotope Xc I J5 is the most important of

all the fission products. It has a large absorption resonance that peaks at E := 0.082 eV

and results in an aborption cross section of approximately 2.7 x 106 barns at 0.025 eV.

Xenon-135 is formed from the decay oriodine-135 (6.7-hour half-life) and is itself radio

active (9.2-hour half-life). It is part of the fission chain shown in Figure 6.5, where all the

decay constants )J are in sec-I and the fission fractions ./. and )'X. are those appropriate

to thermal fission of U2JS
• None of the absorption cross sections in the chain except that

of XelJ~ are large enough to be of any significance.

The decay of Te LJ~ is so fast. and that of Cs 1 JS is so slow (2.6-million-year half· life),

that we may assume for our purposes that }1J5 is formed directly from fission with a

yield )'1 := 0.064 and that the chain ends with the destruction, by {J decay or neutron
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Figure 6.5 The Xc'" fission..produet chain.

absorption, of Xc°'. Thus, if I(t) and X(t) represent the concentrations of II" and

Xe'" at some locacion r in the reactor, the equations specifying the time dependence of

these concentrations may be written (with the r dependence suppressed),

aIU) ,,, ... ( ) lrI{ \at = y"-""', t - th

a~;t) = yX'1:"l!l,(t) + l'l{t) - [~~l!l,(t) + AX'] X(t),

(6.3.11)

where 1:r1 , <1>1(1), and. a:~ are the one-group, macroscopic fission cross section, flux, and

microscopic absorption cross section for Xe l ". As with the samaraium chain, we shall

think of the yields l' and r- as representing averages over the fissionable isotopes present

at location r and over the cnagy spectrum of the neutrons causing fission at that point.

Strictly speaking I:r, alll!~: arc also time-dependent. However, in the time scale (tens

of hours) of xenon transients, this time dependence may be neglected. (Note, however,

that changes of ~~ with time due to changes in temperature may have a short-term

effect on the criticality of the reactor. We shall deal with such matters when we consider

reactor kinetics.)

For <1>, (I) constant the solution of (6.3.11) is

y'1: <I> .
I(t) = +[1 - exp(-llt)] + I{O)cxp(-J.'t),

X(t) = X(O) exp(-{~., + l~t) + x::,,<I>'Ax,[1 - exp(-(a;:<I>, + AX')I)] (6.3.12)
0';1 l +

y'1:"l!l, - 1'1(0) -,<, x, .,
A' _ AX< _ tC'. [CXP(-{CT"l!l, + A )1) - exp(-I. t)l,.. ,

where y .. y' + 7"'.
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Again, we examine what these equations predict about the approach to equilibrium at

constant flux and the change in xenon absorption after shutdown from equiUbrium

operating conditions.

X(t) following Start-Up. If a reactor. initially containing no Xe'" or I"', is brought to a

flux level $, at time t =0 and opualed at $, for a long enough time, (6.3.l2) shows

that, asymptotically, the concentrations of [tJs and Xe lJS become

(6.3.13)

Equation (6.3.12) also shows that the speed with which this equilibrium state is

reached depends on i.' = 2.87 x 10-' sec- t and on (a~~<l>\ + ;.Xe) = (2.7 x 1Q-18<D\

+ 2.09 x 10-') sec·' and thus is about 10' sec(~30 hr) even if(~, is very small. The

situation is thus different from the Sm'·· case. for which the speed of approach to equi

librium is crucially dependent on 00,. Physically the reason for this difference is that

Xe tJs dCC~lYS radioactively and will thus come into an equilibrium condition, in which

the rate of cre:Hion of XelJJ equals its rate of disappearance, in a time characteristic of

both its own half-life and that of IllS. If there are neutrons present to add to the destruc

tion rate of Xe' JS due to radioactive decay, X(t) will approach equilibrium faster. How

ever the 6.7-hour half-life of I'" wiD limit the speed at which equilibrium conditions are

reached. Thus 30 hours after start-up is a good estimate of the time to reach equilibrium

conditions for any value of·~,.

Another important consequence of dte fact that Xe t Jj is radioactive-and another

chOoractcristic of xenon behavior thal ditTers from sOomarium behavior-is thOot X(co} is

nux-dependent. The "equilibrium xenon poison" a;~X(:c) associated with operation at a

constant tlux level ([>1 is

(6.3.14)

For <1> ( equal to, say, 10 neutrons{cm.!/sec, this macroscopic xenon cross section is only

about 9 x 10- 7 Lrl . Thus, in a reactor at very low power, Xe 1J5 alTers a negligible

competition for neutrons. However, for<r'~~(l>l ~ i.x\ G~~X(,:c) approaches Y:::rl

(=0.067 LfI)' For example, for 00, = 5 x 10" neutrons/em' /sec, 11~~X(!Xl) = 0.058 Lfl.
The rate of absorption of neutrons by Xel1S in a thermal reactor opernting at such a

flux level is quite comparable to their I'3.te of absorption in the moderntor or structural

material. As a consequence the presence of ....equilibrium xenon" in a high-power thermal
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reactor has a significant effect on the critical condition of the reactor. Unless an excess

of fuel is provided to overcome the poisoning effects of this isotope, it will not be pos

sible to maintain criticality for mOR than a few hours of full-power operation.

One of the advantages of fast rclCtors is that they do not have this problem. The

energy-dependent microscopic xenon cross section 0';33(£) is large only in the thermal

energy region. Hence the one-group Dumber CT~r will be a million or so times smaller if

it is obtained by averaging over a fast-reactor spectrum.

X(/) after Shutdown from F.cpihDrium Operating Conditions. If we insert (6.3.13) for 1(0)

and X(O) in (6.3.12) we find that,: when a reactor is shut down to <Ill = 0 after operating

under equilibrium conditions during which the one-group flux at point r has been <Ill (0),

the 1133 and Xe l
H concentrations at l' behave according to

(6.3.15)

where, again, time is measumJ from the instant of shutdown, so that X(O) of (6.3.15) is

the equilibrium, preshutdown concentration X(oo) of (6.3.13).

Equation (6.3.15) shows that l(t) and X(/) both approach zero asymptotically. How

ever the time derivative of X(I) evaluated at t = 0 is

(6.3.16)

Thus, if the equilibrium. preshutdown flux 4>1 (0) exceeds ·l·).X./ylO';~ (;:::: 3 X lOll neu

trons/cm2/sec), the derivative oX(/)/otl,_o will be positive, and X(t) will at first grow.

In fact, if the initial equilibrium concentration is high, the net amount of xenon present

can increase by a factor of two or mort before the reactor runs out of 113
S and the net

concentration of xenon begins to decrease. The turnover point depends on the equili

brium conditions at location r but generally occurs about ten hours after shutdown. It

may, however, be necessary to wait 40 or 50 hours after shutdown for the decaying con

centration X(t) to return to its initial equilibrium value.

Figure 6.6 shows the behavior of Xeus under various transient conditons.

6.4 Accounting for DepletiOB EJreds • Mathematical Models of Reactor Behavior

Fuel burnup and the build-up of nuclei in the reactor resulting from neutron absorption

are in principle easily accounted for in the group diffusion-theory model that forms the

basis of most nuclear-reactor design computations. One simply determines multigroup
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Figure 6.6 Behavior of Xeu, in several transient situations.

cross sections throughout the reactor at the beginning of a depletion time step from equa

tions like (5.3.6) (or (5.5.8) if the material is not isotopically homogeneous). These may

be used directly in the multigroup diffusion equations of (4.13.7); or they may be used to

compute asymptotic spectra, via (5.3.7), for each composition in the reactor so that the

spectrum-averaged constants of (5.3.8) and (5.3.9) may be found for use in few-group

diffusion-theory calculations. They, by solving these group diffusion equations. we can

determine the spatial dependence of the flux for each group throughout the reactor.

These flux shapes are assumed to remain constant throughout each time step, and

changes in the concentrations of the important nuclei are found by solving equations

such as (6.2.6) or (6.2.8), with the one-group reaction-time constants O"~(~, replaced by

the corresponding few-group or muftigroup expressions .L9 0'~9([>9' \Vith the new material

concentrations determined in this manner for the end of the depletion time step, new

energy-group parameters are found, and the tandem depletion process is continued.

In practice a great deal of ingenuity is necessary in making this procedure economically

feasible. Problems associated with searching for critical conditions, with keeping track of

the number densities of all the time-dependent isotopes throughout the reactor, and with

using large time intervals for the depletion calculations, all require that special strategies

be developed if the running time for a depletion calculation is not to become unaccept-
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